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Notional Machines and Introductory Programming Education

JUHA SORVA, Aalto University

This article brings together, summarizes, and comments on several threads of research that have contributed
to our understanding of the challenges that novice programmers face when learning about the runtime
dynamics of programs and the role of the computer in program execution. More specifically, the review
covers the literature on programming misconceptions, the cognitive theory of mental models, constructivist
theory of knowledge and learning, phenomenographic research on experiencing programming, and the theory
of threshold concepts. These bodies of work are examined in relation to the concept of a “notional machine”—
an abstract computer for executing programs of a particular kind. As a whole, the literature points to notional
machines as a major challenge in introductory programming education. It is argued that instructors should
acknowledge the notional machine as an explicit learning objective and address it in teaching. Teaching
within some programming paradigms, such as object-oriented programming, may benefit from using multiple
notional machines at different levels of abstraction. Pointers to some promising pedagogical techniques are
provided.
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1. INTRODUCTION

This article reviews the literature on learning the runtime dynamics of computer pro-
grams in the context of introductory programming education. The review is structured
around the concept of a “notional machine”, an abstract computer responsible for exe-
cuting programs of a particular kind. I use the notional machine concept to discuss the
applicability of learning theory to introductory programming education and as a lens
through which to view research findings.

A Multiparadigmatic View. According to the philosopher of science Charles Sanders
Peirce, “reasoning should not form a chain which is no stronger than its weakest link,
but a cable whose fibers may be ever so slender, provided they are sufficiently nu-
merous and intimately connected” [Menand 1997, quoting the 1868 original]. More
recently, but much in this pragmatist spirit, the restrictiveness of strict paradigmatic
dogmas on research approaches and theories is being recognized; paradigm plural-
ism and mixed-methods research are increasingly being advocated both generally
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[Morgan 2007; Tashakkori and Teddlie 2010] and within computing education re-
search (CER) in particular [Thota et al. 2012]. Where findings from different research
traditions point in the same direction, they strengthen each other. Where they point
in different directions, they give us food for thought and remind us that learning is
complex and multilayered. Often, different theoretical perspectives complement rather
than conflict with each other, and something may be learned from points of conflict, too.

This review encompasses work that comes from multiple threads within several
disciplines of research—psychology, education, and computing. These threads vary
greatly in their epistemological foundations, research foci, and typical methodology,
yet all have contributed in different ways to what we know about beginners’ struggles
with program dynamics and the notional machine. My aim is to collect what is known
about this topic and to synthesize a coherent whole from the various threads.

Article Structure. Section 2 introduces the concept of a notional machine, which the
following sections then relate to different (although not disjoint) bodies of research:
studies of misconceptions (Section 3), mental model theory (Section 4), constructivism
(Section 5), phenomenographic research on the different ways in which learners un-
derstand programming (Section 6), and the theory of threshold concepts (Section 7).
Section 8 considers the pedagogical implications of the literature for teaching students
about notional machines. Section 9 is reserved for the role of notional machines within
object-oriented programming. Section 10 contains a few concluding remarks.

This article, which focuses on notional machines, has been edited down from a more
extensive literature review of research on introductory programming education, which
appears in the author’s doctoral dissertation [Sorva 2012]. The philosophical founda-
tions of the learning theories that feature in this article—and the tensions between
them—are also discussed in that work. Parts of Sections 7 and 8 have originally been
published in a conference paper [Sorva 2010].

2. NOTIONAL MACHINES—WHAT ARE THEY?

The term notional machine was introduced to CER by Benedict du Boulay, who used
it to refer to “the general properties of the machine that one is learning to control”
as one learns programming [du Boulay 1986]. A notional machine is an idealized
computer “whose properties are implied by the constructs in the programming language
employed” [du Boulay 1986], but which can also be made explicit in teaching [du Boulay
et al. 1981].

Abstractions are formed for a purpose; the purpose of a notional machine is to explain
program execution. A notional machine is a characterization of the computer in its
role as executor of programs in a particular language or a set of related languages.
A notional machine encompasses capabilities and behaviors of hardware and software
that are abstract but sufficiently detailed, for a certain context, to explain how programs
get executed and what the relationship of programming language commands is to such
executions. The following quote from Bruce-Lockhart and Norvell [2007] illustrates
this idea well.

As we struggled to impart to our students that each instruction they wrote
was meaningful, we had an important insight. The machine (or system) T
we were programming (and which we wanted the students to understand),
was not really a computer, at least in the classic, hardware, sense. Consider
the following simple C code:

int x=5;

int y = 12;

int z;

z =y/5 + 3.1;
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In the language of programming, we say, there are four instructions to be
executed. Instructions to what and to be executed by what? T of course,
but T is certainly not the CPU. The first three “instructions” are actually
to the compiler. ... The fourth is a minefield. There’s a truncation and two
automatic type conversions. ... T is at least partly defined by the language.
In the case of C++ and Java languages, T is an abstraction combining aspects
of the computer, the compiler and the memory management scheme. Our T
is not nearly as “knowable” [as some other systems]. That does not relieve
us of the responsibility of at least trying to define it.

2.1. Many Machines

Since a notional machine is tied to a way of programming, different kinds of pro-
gramming languages will have different notional machines. An object-oriented Java
notional machine can be quite different from a functional Lisp notional machine. Most
notional machines that execute Prolog are likely to be quite different again. Similar
languages may be associated with similar or even identical notional machines. Some
notional machines may not be very ‘machine-like’ at all if they are based on, for exam-
ple, mathematics and lambda calculus.

Not only are there different notional machines for different languages and
paradigms, but even a single language can be associated with different notional ma-
chines. After all, there is no one unique abstraction of the computer for describing the
execution of programs in a language. Let us consider, for instance, the following ways
of understanding the execution of Java programs.

One notional machine for single-threaded Java programs could define the computer’s
execution-time behavior in terms of abstract memory areas such as the call stack and
the heap and control flow rules associated with program statements. The notional
machine embodies ideas such as “the computer is capable of keeping track of differently
named variables, each of which can have a single value,” “a frame in the call stack
contains parameters and other local variables,” “the computer goes through the lines of
the program in order except when it encounters a statement that causes it to jump to a
different line,” and so on. A Java notional machine at a higher level of abstraction could
define the computer as a device that is capable of keeping track of objects that have
been created and passing messages between these objects as instructed by method calls
in a Java program. Objects take turns at performing their defined behaviors and stop
to wait for other objects whose methods they call. The computer stores the objects and
makes sure each object gets its “turn to act” when appropriate. A third Java notional
machine could define the role of the computer on a relatively low level of abstraction
in terms of bytecodes and the components of the Java Virtual Machine.

2.2. Characteristics of Notional Machines
To summarize, a notional machine:

—is an idealized abstraction of computer hardware and other aspects of the runtime
environment of programs;

—serves the purpose of understanding what happens during program execution;

—is associated with one or more programming paradigms or languages, and possibly
with a particular programming environment;

—enables the semantics of program code written in those paradigms or languages (or
subsets thereof) to be described;

—gives a particular perspective to the execution of programs; and

—correctly reflects what programs do when executed.

It is also instructive to consider what a notional machine is not, as I use the term.
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A notional machine is not a mental representation that a student has of the computer,
that is, someone’s notion of the machine. Students do form mental models of notional
machines, however, as discussed in the following text.

A notional machine is not a description or visualization of the computer either, al-
though descriptions and visualizations of a notional machine can be created by teachers
for students, for instance.

Finally, a notional machine is often not a general, language- and paradigm-
independent abstraction of the computer. Although some notional machines are generic
enough to cover many languages, a whole programming paradigm, or even all program-
ming languages, the prototypical notional machine is limited to a single language or
a few similar languages. From the perspective of the typical monolingual CS1 course,
the monoglot programming beginner, and the present review, it is the paradigm- and
language-specific notional machines that are generally of greater interest.

The next five sections relate threads of work within CER to the concept of a notional
machine. The focus of the existing literature is on imperative programming (either pro-
cedural or object-oriented) and so is that of my review. Imperative object-oriented pro-
gramming is a mainstream CS1 paradigm within which there are several different ways
to think about notional machines, which is discussed separately in Section 9. I gloss
over “the third CS1 paradigm” of functional programming; the empirical results and
pedagogical implications discussed do not necessarily apply to functional/declarative
programming.

3. NOTIONAL MACHINES AND THE MISCONCEPTIONS LITERATURE

“On two occasions I have been asked,—“Pray, Mr. Babbage, if you put into
the machine wrong figures, will the right answers come out?” ... I am not
able rightly to apprehend the kind of confusion of ideas that could provoke
such a question” [Babbage 1864].

In some disciplines, concepts and phenomena are largely negotiable and up for in-
terpretation. Students may be encouraged to interpret things in a personal way and
to develop alternative conceptual frameworks. Certainly, many computing concepts
are like this, too. However, computing also features many concepts that are precisely
defined and implemented within technical systems. Students are expected to reach par-
ticular ways of understanding what the assignment statement in Java does, of what
an object is, and of how a given C program executes. Sometimes a novice programmer
“doesn’t get” a concept or “gets it wrong” in a way that is not a harmless (or desirable)
alternative interpretation. Incorrect and incomplete understandings of programming
concepts result in unproductive programming behavior and dysfunctional programs.

Unfortunately, misconceptions of even the most fundamental programming con-
cepts, which are trivial to experts, are commonplace among novices and challenging
to overcome. Recent studies measuring students’ conceptual knowledge suggest
that introductory programming courses are not particularly successful in teaching
students about fundamental concepts and that the problems are not limited to a single
institution nor caused by the use of a particular programming language [Elliott Tew
2010; Kunkle 2010].

3.1. Evidence of Misconceptions

Over the past few decades, many researchers have reported on the ways in which
programming students struggle with fundamental concepts and the kinds of incomplete
and incorrect understandings that students have exhibited. A run-through of this
work appears in the following text. A more detailed catalog of specific misconceptions
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reported in the literature can be found in the doctoral thesis on which the present
article is based [Sorva 2012].

I use the word “misconception” here in a very broad sense to refer to under-
standings that are deficient or inadequate for many practical programming contexts.
What I have lumped together as “misconceptions,” the original researchers have var-
iously called “misconceptions,” “partial understandings,” “incorrect understandings,”
“student-constructed rules,” “difficulties,

” “mistakes,” “bugs,” and so forth.!

Early Work on Imperative Programming. Bayman and Mayer [1983] studied begin-
ners’ interpretations of statements in the BASIC language by asking students to write
plain English explanations of programs. They list a number of misconceptions about
BASIC semantics, for example, LET statements are understood as storing equations
instead of assigning to a variable. Around the same time, Soloway, Bonar, and their
colleagues also explored novice misconceptions and bugs, and discussed how they may
be caused by knowledge from outside of programming, particularly by analogies with
the everyday semantics of natural language [Soloway et al. 1982; Bonar and Soloway
1985; Soloway et al. 1983; du Boulay 1986].

Samurcgay [1989] studied the answers that programming beginners gave to three
program completion tasks and reported that variable initialization in particular was
difficult for students to grasp. Putnam, Sleeman, Baxter, and Kuspa [Putnam et al.
1986; Sleeman et al. 1986] analyzed students’ answers to code comprehension tests and
subsequent interviews. They list numerous errors—surface and deep—that students
make with variables, assignment, print statements, and control flow.

Parameter Passing and Recursion. Fleury [1991] and Madison and Gifford [1997]
interviewed and observed students to discover various conceptions of parameter
passing. Their results suggest that even students who are sometimes capable of
producing working code that uses parameters may misunderstand the concepts
involved in different ways.

Kahney [1983] discovered that students have various flawed models of recursion,
such as the “looping model,” in which recursion is understood to be much like iteration.
Kahney’s work has since been elaborated on by various authors [Bhuiyan et al. 1990;
George 2000a; 2000b; Gotschi et al. 2003]. Recursion is also one of the phenomena
investigated by Booth in her phenomenographic work on learning to program [Booth
1992]. Booth identified three different ways of experiencing recursion: as a program-
ming construct, as a means for repetition, and as a self-reference; students are not
always able to grasp all of these aspects.

Recent Themes: OOP and Java. Since the 1990s, interest in CER has shifted from
procedural programming toward object-oriented programming. Several studies have
reported ways in which students misunderstand object-oriented concepts and features
of OO languages. Holland et al. [1997] noted several misconceptions students have
about objects. For instance, students sometimes conflate the concepts of object and
class, and may confuse an instance variable called name with object identity. More novice
misconceptions about OOP were reported by Détienne [1997] as part of her review of
the cognitive consequences of the object-oriented approach to teaching programming.

Fleury [2000] reported that students form their own, unnecessarily strict rules of
what happens in programs and what works in Java programming. For instance, some

ISome of these differences in terminology are superficial, others are motivated by learning theory—many
phenomenographers, for instance, adopt a perspective in which poorer ways of understanding concepts can
be seen as limited (rather than mistaken) versions of richer understandings (see Section 6).
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of the students she studied thought that the dot operator could only be applied to
methods and that the only purpose of a constructor was to initialize instance variables.

Hristova et al. [2003] list a number of common errors students make when program-
ming in Java. Many of these are on a superficial syntactic level (e.g., confusing one
operator with another), but some suggest deeper-lying misconceptions. Ragonis and
Ben-Ari [2005a] report the results of a wide-scope, long-term, action research study of
high school students learning object-oriented programming. They uncovered an impres-
sive array of misconceptions and other difficulties students have with object-oriented
concepts, the Java language, and the Blued programming environment.

Teif and Hazzan [2006] observed students of introductory programming in two high
school courses and discuss students’ conceptual confusion regarding classes and objects.
For instance, students may incorrectly think that the relationship between a class and
its instances is partonomic, that is, that objects are parts of a class. Eckerdal and
Thuné [2005] also studied the conceptions that students have of these fundamental
object-oriented concepts. Their results highlight the fact that not all students learn to
appreciate objects and classes as dynamic execution-time entities or as modeling tools
that represent aspects of a problem domain.

Vainio [2006] used interviews to elicit students’ understandings of programming
concepts and reports a number of misconceptions about fundamental concepts, for
example, the idea that the type of a value can change on the fly (in Java).

Several complementary reports have affirmed the existence of a number of incorrect
understandings of assignment, variables, and the relationships between objects and
variables [Ma 2007; Sorva 2007; 2008; Doukakis et al. 2007]. For instance, Ma gave
a large number of volunteer CS1 students a test with open-ended and multiple-choice
questions about assignment in Java. He analyzed the results both qualitatively and
quantitatively to understand students’ mental models of assignment and reference
semantics.

Sajaniemi et al. [2008] elicited the understandings that novice programmers have
of program state by having CS1 students draw and write about how they perceived
given Java programs’ state at specific stages of execution. They discovered numerous
misconceptions relating to parameter passing and object-oriented concepts.

As part of a project to develop a concept inventory for CS1, Kaczmarczyk et al.
[2010] interviewed students in order to identify misconceptions. Four themes were
identified: the relationship between language elements and memory, while loops, the
object concept, and code-tracing ability.

Even more misconceptions about object-oriented Java programs have been uncovered
by two recent studies. The interviews of students carried out by Chen et al. [2012]
suggested several forms of conceptual confusion (e.g., between user-defined versus
built-in types, and static members versus constant members). Shmallo et al. [2012]
used questionnaires and interviews to produce a list of misconceptions that either
overexpand on definitions (e.g., “an identifier may refer to two objects or more”) or
incorrectly constrain the properties of constructs (e.g., “it is impossible to access a
static attribute through the relevant class name”).

3.2. Misconceptions of the Hidden Machine

The “hidden, internal changes” that happen within the (notional) machine have been
noted as being problematic for novices [du Boulay 1986]. Consider, for instance, the
notion that the object assignment a = b (in Java) copies the values of an object’s
instance attributes to another object. Overcoming this misunderstanding requires the
concept of a reference to an object, which is something that is not apparent in code.
Many misconceptions, if not most of them, have to do with aspects that are not readily
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visible, but hidden within the execution-time world of the notional machine: references,
objects, automatic updates to loop control variables, and so forth.

Subtle, “hidden” aspects of programs also top various polls on difficult CS1 topics.
Milne and Rowe [2002] surveyed students’ and tutors’ opinions of the difficulty
of programming concepts. They conclude that the most difficult concepts, such as
pointers, have to do with the execution-time use of memory, and that “these concepts
are only hard because of the student’s inability to comprehend what is happening to
their program in memory, as they are incapable of creating a clear mental model of
its execution.” A Delphi survey of computing educators identified references, pointers,
and an overall memory model as some of the most difficult topics in introductory pro-
gramming [Goldman et al. 2008]. The students from various educational institutions
that were surveyed by Lahtinen et al. [2005] found pointers and recursion to be the
most difficult topics.

Computer Capabilities and the Superbug. Some generic misconceptions regarding
the the computer and the nature of programs may lie behind many of the other more
specific misconceptions that have been discovered. Pea [1986] suggested on the basis
of his analysis of novice bugs that many of them are rooted in a “superbug,” that is,
the assumption that there is a hidden, intelligent mind within the computer that helps
the programmer to achieve their goals. Evidence of unrealistic expectations of the
reasoning capabilities of the computer can be seen also in the more recent literature;
for instance, the students studied by Ragonis and Ben-Ari [2005a] sometimes expected
that the computer can draw conclusions from the logical context of statements or the
real-world semantics of identifiers .

It is not just what the computer does behind the scenes that needs to be understood.
The novice must also realize what the notional machine does not do, unless specifically
instructed by the programmer. People do not naturally describe processes in the way
programmers need to. The equivalents of else clauses, for instance, are conspicuous
by their absence in non-programmers’ process descriptions, as people tend to forget
about alternative branches and may consider them too obvious to merit consideration
[Miller 1981; Pane et al. 2001]. The novice needs to learn what the notional machine
does for them on the one hand, and what their own responsibility as a programmer is
on the other.

Section Summary. The literature on misconceptions suggests that many of the prob-
lems of novice programmers are related to inadequate understandings of the notional
machine, and especially to the “hidden” processes that are not directly apparent from
program code. Some of these problems are specific to how the machine deals with indi-
vidual constructs, whereas others are more generic and involve broader misconceptions
of the notional machine and its capabilities.

4. NOTIONAL MACHINES AND MENTAL MODEL THEORY

The theoretical construct of a mental model has been used within the CER literature
to explain (among other things) how people perceive the notional machine and how
people trace programs mentally. This section reviews these two threads and brings
them together.

4.1. An Introduction to Mental Models

A mental model is a mental structure that represents some aspect of one’s environ-
ment. Of particular interest of most mental model theorists have been the interactions
between humans and causal systems such as electrical circuits, process control mech-
anisms, and software [Schumacher and Czerwinski 1992]. It is posited that people use
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mental models of such systems to describe the purpose and underlying mechanisms of
the systems to themselves and to predict future system states.?

Typical Characteristics. According to Norman’s [1983] seminal description, mental
models:

—reflect people’s beliefs about the systems they use and about their own limitations
and include statements about the degree of uncertainty people feel about different
aspects of their knowledge;

—provide parsimonious, simplified explanations of complex phenomena,;

—often contain only incomplete, partial descriptions of operations, and may contain
huge areas of uncertainty;

—are “unscientific” and imprecise, and often based on guesswork and naive assump-
tions and beliefs, as well as “superstitious” rules that “seem to work” even if they
make no sense;

—are commonly deficient in a number of ways, perhaps including contradictory, erro-
neous, and unnecessary concepts;

—Ilack firm boundaries so that it may be unclear to the person exactly what aspects or
parts of a system their model covers—even in cases where the model is complete and
correct;

—evolve over time as people interact with systems and modify their models to get
workable results;

—are liable to change at any time; and

—can be “run” to mentally simulate and predict system behavior, although people’s
ability to run models is limited.

People commonly confuse and combine mental models of similar systems with each
other. One may also have multiple mental models of a single system. Multiple models
may cover different parts of the system in a nonoverlapping and complementary way,
or they may be parallel—perhaps contradictory—models of the same parts.

Norman [1983] suggested that people rely on their mental models to develop behavior
patterns that make them feel more secure about how they interact with systems, even
when they know what they are doing is not necessary. Mental models need to be
only minimally viable to be maintained, and they do not even need to be accurate for
some system users to feel they are fully satisfactory—an “ignorance is bliss” approach
[Westbrook 2006].

The Growth of Expertise. While mental models are clearly useful, they are also poten-
tially dangerous. An inaccurate mental model will lead to mistakes. Kempton’s [1986]
research contributes the example of the thermostat: Mental models based on ill-fitting
analogies to, say, car accelerators, lead people to think that turning the thermostat
up to ‘full throttle’ will heat the home faster. A poor mental model of a computer pro-
gramming environment will result in bugs. Even though people themselves do not
require their mental models to be complete and accurate in order to be used, they
“certainly function with varying levels of efficiency and effectiveness as they employ
mental models that are inaccurate and/or incomplete” [Westbrook 2006].

The quality of mental models has been argued to be part of what sets the expert apart
from the novice. Experts rely on analogies based on existing mental models as they
encounter new situations that require them to form new models—as novices do. How-
ever, experts’ mental models are robust, based on a principled understanding of system

2In this review, when I write of mental models, I refer only to so-called causal mental models—long-term
mental models of causal systems. Another body of research, less germane for present purposes, is concerned
with logical mental models [Johnson-Laird 1983; Markman and Gentner 2001].
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components, and allow for unanticipated situations to be dealt with. Because uncer-
tainty about system capabilities can lead to trying multiple approaches, novices tend
to rely more on multiple inconsistent causal mental models of systems, while experts
are less likely to do so. Compared to the ad hoc naive models often employed by novices,
experts’ mental representations are relatively stable as the result of lengthy experience
[Schumacher 1987; Schumacher and Czerwinski 1992; Gentner and Stevens 1983].

Learning About a System. Mental models are often not the product of deliberate
reasoning; they can be formed intuitively and quite unconsciously. Prior knowledge
plays a key role in the early stages of a mental model of a system, as model forma-
tion often draws on metaphors and analogies [Gentner and Gentner 1983; Schumacher
and Czerwinski 1992]. To create initial models of unfamiliar systems, people typi-
cally retrieve experiences of superficially similar systems (e.g., other systems having a
similar-looking GUI). With experience, understanding of causal relationships emerges
through prolonged exposure to the system, but it is unrealistic to expect the transfer
of a mental model before it is well ingrained. According to Schumacher and Gentner
[1988], the less superficially similar two systems are, the worse transfer is, even when
the systems are functionally isomorphic.

Problematic from a learning point of view is that, although models can be developed
or corrected through practice and instruction, people tend to cling to emotionally com-
fortable and familiar existing models. Moray, for instance, found that changing one’s
mental model took significantly longer than it took to originally form an initial model of
similar complexity [Schumacher and Czerwinski 1992]. Making matters worse is that
mere coincidences can reinforce people’s confidence in their existing yet flawed models
[Besnard et al. 2004].

4.2. Models of the Machine

The CS1 student needs to construct a mental model of a notional machine in order to
program.

Many authors have discussed the role of the machine in introductory programming in
terms of mental models. Some “attribute students’ fragile knowledge of programming
in considerable part to a lack of a mental model of the computer” [Perkins et al. 1990].
It is claimed that novices’ difficulties in developing and debugging their programs stem
from the fact that “their mental model of how the computer works is inadequate” [Smith
and Webb 1995]. “It is widely accepted that programming requires having access to
some sort of ‘mental model’ of the system” [Cafias et al. 1994].

A mental model of a notional machine—together with an understanding of the
program (see later discussion)—allows a programmer to make inferences about
program behavior and to envision future changes to programs they are writing. A
beginner will only have a mental model of the specific system that they are using
for programming (a specific language-dependent notional machine), but as he gains
in experience, he forms mental models of other notional machines and increasingly
general schemas of computer behavior.

Mental model theory tells us that people often use analogies based on surface fea-
tures when forming mental models of new systems they encounter. There is evidence
of this in programming education as well. The machine’s properties are implicit in
the constructs of the corresponding programming language—the visible facade of the
notional machine. Indeed, program code is a fertile basis for constructing a mental
model as “novices make inferences about the notional machine from the names of the
instructions” [du Boulay et al. 1981]. On the surface, many programming languages
resemble natural language and the language of mathematics. Misconceptions (see
Section 3) are brought about by unsuccessful analogies with these realms, such as
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when students conclude that the Java statement a = b + 1 defines a mathematical
equation.

A novice’s mental model of a notional machine is likely to be—typically of mental
models in general—incomplete, unscientific, deficient, lacking in firm boundaries, and
liable to change at any time. It may be based on guesswork that draws on superficial
program characteristics such as keywords and identifiers. Despite such shortcomings,
the learner can feel comfortable with the model and rely on it while developing behav-
ioral patterns for programming. Novices may also use multiple, possibly contradictory
models to deal with different situations. Assignment statements with integer variables
might be explained with one mental model, for example, and assignment using record
types with an entirely different one.

By contrast, experts’ mental models are more stable and accurate, and draw on
general principles rather than superficial characteristics. A challenge of programming
education is to facilitate the evolution of students’ models so that they have these
features. Teaching about an explicit notional machine may decrease the level of freedom
that learners allow themselves as they form mental models and may result in better
models (see Section 8). Aiding mental model formation as early as possible is important,
as changing an ingrained but flawed mental model is more difficult than helping a
model to be constructed in the first place. Mental model research further predicts that
novice programmers can be expected to have trouble transferring their mental models
of a notional machine to an even superficially different programming language unless
the original model is well ingrained through a substantial amount of practice.

4.3. Mental Models and Tracing

“To understand a program you must become both the machine and the pro-
gram” [Perlis 1982].

Mental model theory has also been applied to introductory programming education
by considering the roles of mental models in program tracing.

Running a Mental Model. According to Norman’s description, mental models are
“runnable.” That is, people can use mental models to reason about systems in particular
situations, to envision with the mind’s eye how a system works, and to predict the
behavior and states of a system given a set of initial conditions [Gentner and Stevens
1983; Markman and Gentner 2001]. For instance, people can run their mental models to
predict the trajectories of colliding balls in a physical system, the behavior of an existing
software system under given parameters, or the behavior of a computer program which
they are presently designing.

Mental simulation is performed in working memory—the main bottleneck of the
human cognitive apparatus [Tuovinen 2000]. It often involves visual imagery and may
have a motor component. Since the capacity of working memory is very limited, it
comes as no surprise that researchers have found that mental simulations involve only
a very small number of factors. According to Klein [1999], for instance, even experts’
mental simulations rarely involve more than three factors (or “moving parts”) and six
transition states (stages). Simulating a system’s behavior at a low level of abstraction
can fail as a result of too many variables or states. Simulation at an excessively high
level of abstraction will not produce working solutions to problems either, and even
when the overall level of abstraction is appropriate, people tend to neglect or abstract
out important information. To solve problems successfully, it is crucial to simulate
systems at a level of abstraction that is just right for the problem at hand and to focus
exactly on those factors that are important to produce the kind of prediction or solution
aimed for. To do so is difficult and requires experience.
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Tracing the Program and the Machine. In the context of programming, simulations
of program execution are often referred to as tracing. Tracing is a key programming
skill that expert programmers routinely use during both design and comprehension
tasks [Adelson and Soloway 1985; Soloway 1986; Détienne and Soloway 1990].

One might view program tracing as running a mental model of a program with some
input, while also running a separate mental model of a notional machine for which
the program itself serves as input. However, when we run a program, “the computer
effectively becomes the mechanism described by the program” [du Boulay 1986]. When
we speak of program execution, we use expressions such as “the program does X”
and “the computer does X” to mean effectively the same thing. As noted earlier, the
borders of mental models are often vague. Even though the models of the machine and
program can be viewed analytically as separate, they may be inextricably entwined
during mental tracing and are not necessarily distinct in the programmer’s memory.
In the following, I write of mental tracing as the running of a single mental model that
encompasses both the notional machine and the program that is being traced.

Tracing and Novices. Programmers prefer symbolic tracing that uses nonspecific
values—this is indeed typical of mental simulations in general. Experts tend to only
use concrete tracing in challenging situations where other methods fail. Novices, who
do not perceive the kinds of patterns in code that allow for abstraction, and whose
programs are buggier than those of experts, need concrete tracing often.

Unfortunately, novice programmers often struggle greatly with tracing.

In a well-known study, Lister et al. [2004] measured students’ ability to trace through
a given program’s execution. They gave a multiple-choice questionnaire to students
in a number of educational institutions around the world. The questions required
the students, who were near the end of CS1, to predict the values of variables at
given points of execution and to complete short programs by inserting a line of code
chosen from several given alternatives. Lister et al. concluded that many students were
unable to trace. While there was obviously some variation in students’ ability between
institutions, the results were disappointing across the board.

Other studies have produced similar results. For instance, an earlier multi-
institutional study by Sleeman et al. [1986] analyzed code-driven interviews to conclude
that “at least half of the students could not trace through programs systematically”
upon request, and instead “often decided what the program would do on the basis of
a few key statements.” Adelson and Soloway [1985] found that novices were unable to
mentally trace interactions within the system they were themselves designing. Kacz-
marczyk et al. [2010] report an inability to “trace code linearly” as a major theme of
novice difficulties. A series of studies has recently indicated that many students fail
to understand statement sequencing to the extent that they cannot grasp a simple
three-line swap of variable values [Corney et al. 2011; Simon 2011; Teague et al. 2012;
Murphy et al. 2012]. In one study, the problem existed even among students taking a
third programming course [Simon 2011].

Moreover, Perkins et al. [1986] found that many novices do not even try to trace
the programs they write, even when they need to in order to progress. In their study,
“students seldom tracked their programs without prompting.” The disinclination to
trace one’s programs, Perkins et al. argue, may be due to reasons such as a failure
to realize the importance of tracing, a lack of belief in one’s tracing ability, a lack of
understanding of the programming language, or a focus on program output rather than
on what goes on inside.

Status Representations. Tracing a program requires the programmer to keep track of
the state of program execution, that is, to simulate the job of the notional machine. A de-
scription of program state, which Perkins et al. [1986] call a status representation, must
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be dynamic, changing as execution proceeds. A status representation is based on the
elements of (one’s mental model of) the notional machine used: variables, objects, ref-
erences, function activations, and so on. A status representation of a complex program
involves an amount of information that often exceeds the capacity of working memory,
which is why we use external aids such as scraps of paper and debugging software.

Novices need concrete tracing often, but are not experienced at selecting the right
“moving parts” to keep track of in the status representation, causing them to fail as a
result of excessive cognitive load [Vainio and Sajaniemi 2007; Fitzgerald et al. 2008].
An example of a novice coping mechanism may be the “single-value tracing” observed
by Vainio and Sajaniemi, which limits the number of nontrivial variable values in
one’s mental status representation to one: Only a single unnamed “slot” is used to
store the value of whichever variable was most recently assigned a value that is not
directly visible in code. Single-value tracing is based on an incorrect mental model of
the notional machine, but the novice may not even realize this, as the approach “works
fine with small programs that are typical to elementary programming courses.”

Robustness. One theory of mental models was put forward by de Kleer and Brown
[1981; 1983], who argue that only certain kinds of mental models, which meet cer-
tain “esthetic principles,” lend themselves to answering unanticipated questions about
systems. De Kleer and Brown contended that using such high-quality mental models,
which the authors termed robust, is characteristic of expert behavior. Robustness arises
out of submodels that represent components of the system: The components of a robust
model are understood in terms of general knowledge that pertains to those components
rather than specific knowledge that pertains to the particular configuration of the com-
ponents. A nonrobust model may serve in the context of a particular system under
normal circumstances. A robust model is needed for transfer to a similar but novel
problem and for dealing with exceptional situations such as component malfunctions.
This makes robust models highly desirable.

If de Kleer and Brown’s theory holds, and assuming that computer programs are
causal mechanisms of the sort that their theory applies to, then for students to transfer
their understanding of one program to other programs, they need a robust model of
the original program. A robust mental model would also be needed for debugging. The
components of a program are the programming constructs used in the program code.
In a robust model, these program components are understood in terms of their general
semantics, that is, in terms of what they mean to the notional machine.

Vainio, who applied de Kleer and Brown’s theory to programming [Vainio and Sa-
janiemi 2007; Vainio 2006], discusses the following code fragment:

for (i = 0; 1 < 10; i++) {
System.out.println(i);
¥

A reasonable description of this for loop is: “First, the variable—i in this case—is
set to zero. Then the loop iterates over all the values of i from 0 to 9 and prints them
out.” A novice programmer may form a mental model of the code that matches this
description and is viable when it comes to dealing with this specific program, but is
not robust. For instance, some of the students in Vainio’s study thought that whichever
variable is used within the body of a for loop is always set to zero at the start of
the loop. Such an understanding is clearly not generally viable. It is also not robust:
The semantics of a for statement (a program component) are mixed up with what
the for statement is used for in the particular context. Vainio and Sajaniemi [2007]
describe such violations of robustness principles as common, attributing this in part
to the tendency in CS1 courses to associate each type of problem with only a single
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kind of programming construct, and each programming construct with a single kind of
problem.

Section Summary. Mental model theory has contributed to our understanding of the
kinds of intuitive mental representations that novice programmers form of notional ma-
chines, often initially based on superficial language features and analogies. Moreover,
the theory suggests that substantial experience with a particular notional machine is
needed before transfer to superficially dissimilar machines is likely to succeed. The
key skill of program tracing can be viewed as the “running” of a mental model that
encompasses both program and machine. Two challenges to the successful running of a
mental model are keeping track of program state in working memory, and the difficulty
of forming mental models that are robustly founded on context-free runtime semantics
of each construct.

5. NOTIONAL MACHINES AND CONSTRUCTIVISM

The central tenet of the educational paradigm known as constructivism is that people
actively construct knowledge rather than passively receiving and storing ready-made
knowledge. Knowledge is not taken in as is from an external world, and it is not a copy
of what a textbook or teacher said. Instead, knowledge is unique to the person or group
that constructed it. Learning occurs as existing knowledge and the learners’ interests
interact with new experiences. On such grounds, constructivists commonly promote
pedagogies in which learners have active roles.

Section 5.1 is a broad overview of constructivism (based primarily on Phillips [1995],
Steffe and Gale [1995], Larochelle et al. [1998], Phillips [2000], and Tobias and Duffy
[2009]). In Section 5.2, I present and comment on what has been said in the CER liter-
ature concerning the relationship between constructivism and the notional machine.

5.1. Different Constructivisms

It is nigh on impossible to find a present-day educational researcher who believes that
learning simply involves the transmission, or “pouring,” of pre-existing knowledge from
a teacher or a book into students. Calling oneself a constructivist is politically correct;
denying the active role of learners in building knowledge is to invite scorn. “There is
a very broad and loose sense in which all of us these days are constructivist” [Phillips
1995]. However, we vary in how constructivist we are and in how we are constructivists.

Flavors of Constructivism. Constructivists differ among themselves as to whether
individual minds or social groups (or both) are seen as the knowledge-constructing
agents. Personal constructivists emphasize the idiosyncratic construction of knowledge
by individuals. Social constructivists instead emphasize the importance of the social
and cultural nature of individuals’ knowledge construction and tend to see knowledge
as something that is defined through social collaboration and language use.

Some constructivists are satisfied with a very abstract notion of knowledge construc-
tion; others draw on various theories to explain the specifics. For instance, personal
constructivists draw variously on mental model theory, schema theory, and conceptual
change theory, among others.

There are also many “pedagogical constructivists,” who do not take a stance on
theoretical issues and focus on the use of constructivist pedagogies such as problem-
based or inquiry-based learning.

Degrees of Constructivism. Purists of various constructivist traditions adopt extreme
epistemological stances. They argue that what we call knowledge should be discussed
independently of ontology, as a real world—if one exists—if unknowable. According
to these strong forms of constructivism, what we know is only our own (or our social
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group’s) construction and cannot be said to be true or false with respect to an external
reality. The middle ground between the purists and traditional realists is occupied by
moderates who agree with the constructivists that knowledge is not securely founded
on an external reality and that we cannot be sure about the truth value of knowledge
claims. Nevertheless, moderate constructivists argue that reality impacts what knowl-
edge people construct and affects how useful that knowledge is and, therefore, has a
place in epistemology [Phillips 1995; 2000].

5.2. Constructivisms in the Notional Machine Debate

Although forms of constructivism have impacted on computing education for decades,
it is only more recently that constructivism has become a clearly visible force in the
CER literature [Greening and Kay 2001]. Constructivism of one kind or another is in-
creasingly referred to by computing educators—whether as a buzzword or as a genuine
theoretical framework—as they seek to justify and inform pedagogical interventions
in programming education, to motivate research questions or approaches, or as an
analytical tool that retroactively justifies existing pedagogy. In this review, I focus on
what has been said about the notional machine in constructivist terms; the discussion
in two publications (Greening [1999] and Ben-Ari [2001]) forms the spine of this part
of the review.

Just as constructivism in general is far from being a single well-defined position,
scholars within CER differ greatly in their how they perceive the implications of (vari-
ants of) constructivism to introductory programming education.

Greening: Multiple Perspectives. Greening [1999] advocates a form of strong construc-
tivism in pedagogy. He argues that the main challenge of learning programming, from
the constructivist point of view, is not the acquisition of knowledge about programming
languages, syntax, and semantics. Rather, learners must come to see programming
as an essentially creative pursuit involving the skills of synthesizing and problem
solving. Genuine skill in programming involves being able to tackle ill-structured,
complex problems in authentic contexts. Greening further contends that strong con-
structivism is much needed in modern computer science education as students and
teachers are forced to cope with the information explosion and “multiple world views
in flux.” Greening promotes problem-based learning [Savery and Duffy 1995] as an
example of a pedagogy suitable for achieving these goals.

When it comes to various human aspects of computing, such as software engineering
practices, good design, and usability, Greening is no doubt right to stress the usefulness
of learning to cope with multiple viewpoints. However, when it comes to learning how
to cope with the computer itself, a different line of constructivism-inspired thinking is
suggested by Ben-Ari [2001]. The computer does not negotiate. . .

Ben-Ari: Prior Knowledge of the Computer. Ben-Ari [2001] discusses the application
of constructivism to computing education, focusing primarily on what could be char-
acterized as a moderate personal constructivism of a cognitivist bent. He emphasizes
how constructivism highlights the importance of learners’ prior knowledge for learning,
and draws a number of conclusions that “seem to follow directly from constructivist
principles.” Ben-Ari’s thesis rests on four claims.

—Knowledge of the computer is a prerequisite for understanding computing as we
know it.

—Beginners to computing lack effective models of the computer.

—Learners necessarily construct knowledge about the phenomena they encounter, for
better or worse.

—The computer forms an “accessible ontological reality”.
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Ben-Ari argues that, according to (cognitive) constructivist principles, when learners
come across a system, they construct a mental model of it. Constructing knowledge is
inevitable and will happen regardless of whether the learner has been taught a nor-
mative conceptual model of the phenomenon, although instruction can have an effect
on the resulting model [Ben-Ari 2001; Ben-Ari and Yeshno 2006]. Ben-Ari marshals
evidence from the literature (see Sections 3 and 4) to support his argument that when
faced with abstractions such as program code, students will necessarily construct their
own knowledge of the notional machine. Unfortunately, “intuitive models of computers
are doomed to be nonviable.”

In stressing “accessible ontological reality,” Ben-Ari contends that computing (the
parts of it that directly involve computers, at least) does have an ontology that is
reflected in useful knowledge; this goes against the radical constructivist rejection
of ontology as an epistemological basis. The computer is an artifact that behaves in
a certain way, and unless the learner’s understandings of the computer are a close
enough match with this reality, there will soon be consequences. Feedback on nonviable
understandings is often immediate and brutal in the shape of error messages, crashes,
and bugs. Moreover, while the specifics of people’s constructed understandings of the
computer are unique, all viable understandings must match the normative model fairly
closely, leaving little room for disagreement. As Ben-Ari [2001] points out, “there is not
much point negotiating models of the syntax or semantics of a programming language”
once the decision to use a particular programming language has been made. So much
for the “spectrum of views” [Greening 1999] that constructivist educators generally
hope students will explore!

The Role of the Machine. Greening is skeptical about the claim that a model of the
computer is needed for learning computing, and notes that (strong) constructivism is
less about prescribing what prerequisite knowledge is needed than it is about acknowl-
edging that prior knowledge plays a part in knowledge construction. He further argues
that a model of the computer will be less important in the (near?) future.

“Increasingly, perhaps as a sign of maturity of the discipline(s) of computing,
the need to understand the machine will dissipate. This statement will surely
horrify some readers” [Greening 1999].

Greening appears to be talking about the importance of understanding the actual
machine at a fairly low level and, in this respect, has an unhorrifying point. Levels
of abstraction in programming do appear still to be rising, which may indeed mean
that the low-level machine is becoming less and less important for introductory pro-
gramming education. However, unless computing and the nature of program execution
change in a dramatic way, it remains easy to agree with Ben-Ari’s [2001] argument
that students need an understanding “one level beneath” the primary targeted level (of
program code) that is viable for the purpose of explaining phenomena at the targeted
level. The level of abstraction of the notional machine that is needed may increase in
the future, along with the level of abstraction of programming languages, but a notional
machine will nevertheless be required by would-be computer programmers.

Section Summary. A moderate form of constructivism that underlines the need to
identify prerequisite knowledge may be interpreted as lending support to the claim that
it is crucial for beginner programmers to form an understanding of the computer that
matches a normative model. This model does not need to be the actual computer, but a
notional machine that operates just beneath the abstractions on which the learners pri-
marily focus. Stronger form of constructivism, on the other hand, question educational
norms that are dependent on ontology; proponents of these views may see learning
about the computer as less important.
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6. NOTIONAL MACHINES AND PHENOMENOGRAPHY

Phenomenography is a primarily qualitative tradition of empirical research, which has
evolved from a research method used in the 1970s into a theoretically laden, method-
ologically varied approach to empirical research on human experience. Section 6.1 first
introduces some fundamentals of phenomenographic research (primarily on the basis
of Marton and Booth [1997], Marton [2000], and Pang [2003]), which Section 6.2 then
relates to the notional machine.

6.1. Phenomenography

Phenomenographers explore the educationally critical variation in how people expe-
rience, perceive, or understand various phenomena. A phenomenon of interest can be
specific, such as number in kindergarten mathematics, matter in physics, or variable
in computing, or more generic, such as learning to program or even learning in general.

Central to the phenomenographic approach is the concept of a way of experiencing a
phenomenon.

Ways of Experiencing. People experience the same phenomenon differently. Even the
same person experiences the same phenomenon differently at different times and in
different contexts. Are there countless significantly different ways of experiencing the
same phenomenon? Phenomenographers posit that it is not so, and a researcher can
describe ways of experiencing a phenomenon in an abstract way that captures the
telling differences between the few qualitatively different ways of experiencing the
phenomenon.

A phenomenon, viewed from a particular perspective, is characterized by a limited
number of critical aspects that distinguish it from other phenomena. Each way of un-
derstanding a phenomenon is defined by which critical aspects are discerned; contrasts
in what is discerned and what is not define the qualitative differences between ways
of experiencing.

To take an example from programming, one study discovered three different ways
in which CS1 students understand what an object is [Eckerdal and Thuné 2005].
The first category is very simple: An object is a piece of code. Here, only the critical
aspect of program text is in focus. In a richer understanding, objects are additionally
seen as active entities during a program run; this relationship between objects and
execution-time events is another critical aspect of objects. In the third category, a
world-modeling aspect is also attributed to objects. The results of this study are typical
of phenomenography in that the categories form a logical hierarchy in which some
understandings are richer, that is, additional critical aspects are discerned in them.

Learning as Change in Experience. The most important form of learning, from the
phenomenographic point of view, involves becoming able to discern critical aspects of a
phenomenon so that the phenomenon as a whole is experienced in a new, qualitatively
different way.

Phenomenographers emphasize that the challenges of learning are intrinsically tied
to the content that is being learned about and the specific learning goals. They de-
emphasize or even question the very ideas of generic mental representations (e.g.,
mental models), generic processes of learning, and generic pedagogical aids. Instead,
it is recommended that researchers and teachers focus on the relationships between
learners and the phenomena that they learn about, and consider pedagogy in terms of
the specific critical aspects that learners are expected to learn to discern.

6.2. Experiencing Introductory Programming

Some of the phenomenographic work within CER relates to program dynamics and the
notional machine.
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Table |. Different Ways of Experiencing Programming

Code Description

A Computer programming is experienced as using a programming language for writing program
texts.

B Computer programming is experienced as above, and as a way of thinking that relates
instructions in the programming language to what will happen when the program is executed.

C Computer programming is experienced as above, and as/producing applications of the kind
familiar from everyday life.

D Computer programming is experienced as above, and as a “method” of reasoning that enables
problems to be solved.

E Computer programming is experienced as above and as a skill thatcan be used outside the

programming course and for other purposes than computer programming.

Adapted from Thuné and Eckerdal [2010].

Experiencing Specific Concepts. Some studies have investigated the ways in which
programming students experience specific concepts and constructs. An emerging theme
in the results of these studies is that novice programmers sometimes focus exclusively
on the “obvious” static aspect of concepts that is visible in program text. Eckerdal and
Thuné’s study on conceptions of objects [Eckerdal and Thuné 2005], cited above, is an
example of this kind of work; the authors also report an analogous categorization of
understandings of the concept of class. An earlier study on ways of experiencing recur-
sion similarly discovered that recursion sometimes only perceived as a code construct
rather than in terms of runtime behavior [Booth 1992].

Experiencing Programming in General. Even more interesting for present purposes
are the phenomenographic studies in which the phenomenon of interest has been
broader. Developing on the pioneering work of Booth, various researchers have studied
how novice programmers perceive the phenomena of programming and learning to pro-
gram [Booth 1992; Bruce et al. 2004; Stoodley et al. 2004; Eckerdal et al. 2005; Thuné
and Eckerdal 2009; 2010]. This body of work largely points in the same general direc-
tion, with studies supporting Booth’s findings and elaborating on some themes. As a
representative example, Table I shows Thuné and Eckerdal’s categorization of students’
ways of understanding what programming is. As in the studies of specific programming
concepts, the first category describes a relatively poor way of understanding in which
runtime behavior is ignored.

A beginner programmer who perceives learning to program merely as learning to
write program text according to syntactic rules will inevitably miss out on many
opportunities to learn until their overarching view of programming changes signifi-
cantly. Phenomenographic results have highlighted the critical aspects of programming
that constitute challenges for programming education. One of these challenges—the
execution-time aspect which is discerned in Category B of Table I but not in Category
A—corresponds roughly to the notional machine; in Category A, programming is not
perceived as writing instructions for the machine to execute.

Section Summary. Novice programmers sometimes fail to perceive programming
constructs as more than code and programming as more than the production of code.
One of the things that is lacking from such conceptions is the action that takes place
when programs are run. The limited understandings limit programming ability and
opportunities for further learning. Phenomenographic work within CER can be inter-
preted as supporting the need for beginners to learn about a notional machine that
relates program text to runtime activity within the computer.
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7. NOTIONAL MACHINES AND THRESHOLD CONCEPT THEORY

Meyer and Land [2003; 2006] propose that embedded within academic disciplines there
are troublesome barriers to student understanding, which they term threshold concepts.
These “jewels in the curriculum” represent transformative points in students’ learn-
ing experiences that allow them to view other concepts in a different light. Proposed
threshold concepts in programming include program dynamics, information hiding,
and object interaction.

Threshold concepts (TCs) are still a fairly young theoretical framework that requires
better empirical support. However, they are obviously a fruitful basis for discussion and
pedagogical explorations, as evidenced by the rapid growth of TC literature over the
past few years. The ongoing work on threshold concepts may help us gain further in-
sights into why some students seem not to learn “any of the stuff,” while other students
seem to get “all of the stuff”—a phenomenon familiar from CS1 courses. The answer
may lie in the curriculum itself: TC theory suggests that some particularly transfor-
mative and integrative “stuff” leaves many students stuck and unable to proceed until
they are able to see the connections between related concepts.

7.1. Characteristics of Threshold Concepts

A threshold concept is not a mere “core concept.”® To qualify as a TC, a concept must
meet a stricter definition, albeit one which is still being debated. Proposed characteris-
tics of threshold concepts include the following [Meyer and Land 2006; Land and Meyer
2008; see also Sorva 2010].

—A threshold concept significantly transforms how the student perceives a subject or
part thereof, and perhaps even occasions a shift of personal identity.

—A threshold concept widely integrates other content by exposing its interrelatedness.

—A threshold concept leads to a new way of thinking and practicing within a subject
area; the learner becomes able to perceive concepts, problems, solutions, and the
subject itself like a fully fledged member of the disciplinary community.

—Such a transformation is probably irreversible, that is, unlikely to be forgotten or
undone.

—A threshold concept is potentially very troublesome to students for any of a variety
of reasons including conceptual complexity, tacitness in expert practice, apparent
meaninglessness, and counterintuitivity.

—Learning about a threshold concept commonly involves a potentially lengthy state of
liminality, during which the learner oscillates between “knowing” and “not knowing,”
may attempt to mimic presumably correct behavior and often experiences strong
negative emotions.

—Threshold concepts tend to involve the transformation of one or more “obvious”
everyday ideas into discipline-specific forms (e.g., the general idea of abstraction into
information hiding).

—A threshold concept may mark boundaries in “conceptual space” between disciplines
or schools of thought.

7.2. Program Dynamics as a Threshold Concept

A crucial distinction in programming is the one between the existence of a program
as code and its existence as a dynamic execution-time entity within a computer. Code
is tangible and its existence is easy to perceive. The latter aspect of a program—

3In fact, threshold concepts may not be individual concepts with well-established names at all, but something
broader; this is an issue that is being debated by the TC research community. My use of the word “concept”
in “threshold concept” may be read as shorthand for “way of understanding certain curricular content.”
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the program as run by a notional machine—is much less so. An argument has been
presented that program dynamics constitutes a major transformative threshold that
beginner programmers must cross. I restate this argument in the following text (largely
reproduced from Sorva [2010], see also Vagianou [2006], Shinners-Kennedy [2008], and
Zander et al. [2008]).

Integration. A dynamic view of a program brings together program code, the state
of the program, and the process that changes it, as well as the computer on which the
program runs (if not the actual hardware, at least a notional machine). The ability
to view programs as dynamic is required to genuinely understand a legion of other
concepts and distinctions: variables and values; function declarations versus function
calls; classes, objects, and instantiation; expressions and evaluation; static type decla-
rations versus execution-time types; scope versus lifetime; and so on. The dynamic use
of memory to keep track of program state is central to much of this integrative power.

Transformation. As the phenomenographic work reviewed in Section 6 has illus-
trated, learning to program involves a qualitative shift in how learners become able to
perceive programming constructs and programming itself not only in terms of code but
in relation to the notional machine.

Program dynamics transforms the universal, everyday notion of state—which might
be termed a “fundamental idea” of computing [Schwill 1994; Sorva 2010]—into some-
thing that is pivotal to how the programmer thinks. A dynamic view of programs leads
to what Perkins [2006] calls a new episteme, a new way of reasoning about programs
that is impossible unless the student has ingrained the notion of program dynamics
into their thoughts and practices. In particular, thinking in terms of program dynamics
makes the key skill of program tracing possible (see Section 4.3).

Trouble. Program dynamics are troublesome. Practically any student of program-
ming can pay lip service to the idea that programs are executed step by step, making
things happen within the computer. However, not all of those students genuinely in-
ternalize this notion and make it work for them. The preceding sections have provided
plentiful references to studies demonstrating the difficulties that novices have with
understanding what happens when a program is run.

Part of the troublesomeness of program dynamics lies in its tacitness. As noted in
Section 4.3, programmers rarely make explicit the dual nature of programs, which
is obvious to them—when we speak of a “program,” we refer to either the code, to
what the code does upon execution, or to both at once. The centrality of the previously
unproblematic notion of state to program dynamics may also be counterintuitive to
novices [Shinners-Kennedy 2008].

Boundaries. End users and programmers have different stances toward computer
programs. Only the latter group has a sense of being directly involved in what hap-
pens when a program gets executed by a computer. This is one way in which program
dynamics serves as a boundary marker, separating computer programmers from non-
programmers. A student who does not trace programs or think about the dynamics of
their execution is not really thinking and practicing like a computer programmer.

Program dynamics also demarcates two schools of thought within computing: It lies
at the border of computer programming and programming-as-mathematics. The latter
episteme, which Dijkstra famously and controversially advocated as the perspective of
choice for CS1 courses, is ruled by formal logic and proofs, and the former by testing,
mental tracing, and operational reasoning [Dijkstra et al. 1989].

Irreversibility. There is little research-based evidence of the irreversibility of learn-
ing about program dynamics. However, at least the present author has never heard
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of a programmer forgetting how to see programs as dynamic, traceable entities once
they have made that concept their own, nor does he expect to hear of one. A sign of
irreversibility may also be the difficulty that some experienced programmers have in
perceiving how programming appears to the beginner who has not yet crossed this
early “obvious” threshold.

Section Summary. Program dynamics—the realm of the notional machine—is a plau-
sible threshold concept in computer programming, as it appears to have the main char-
acteristics of such concepts. It is integrative, transformative, troublesome for many
learners, sits at a disciplinary boundary, and opens up to a way of reasoning about
programs as programmers do. Failing to cross this threshold is a serious obstacle to
further learning.

8. PEDAGOGICAL IMPLICATIONS

In this section, I consider the pedagogical implications of what has been said, drawing
eclectically on the theories discussed in the preceding five sections and their associated
pedagogical recommendations.

8.1. The Notional Machine as a Learning Objective

Transforming Learners’ Perspectives. Both phenomenography and the theory of
threshold concepts emphasize that there are different ways of perceiving curricular
content. Correspondingly, ‘teachers should take as their goal the transformation of
learners’ perspectives to key content. Unless learners have access to the appropriate
perspective, further teaching will be inefficient if not entirely fruitless. The threshold
concepts framework suggests “a less is more approach” to teaching [Cousin 2006]: The
teacher should concentrate their efforts on the selected content that transforms the
student’s view of the discipline and makes learning other concepts easier, rather than
burying these conceptual jewels within a vast bulk of knowledge where they may go
all but unnoticed.

Recursion, reference parameters, and object instantiation, for example, are concepts
that are hard enough to grasp even for a novice who is capable of thinking about pro-
grams in terms of their dynamic aspect and tracing execution step by step. Without
the “lens” of program dynamics, mastering those other important concepts becomes
next to impossible. A programming teacher must not fall into the trap of assuming that
students think as the teacher does. Instead, teachers need to help students uncover
the nature of the tacit“underlying game.” Neither the teacher nor the student should
be allowed to settle for mere lip service to the idea that programs run step by step and
use memory. A student who passes a programming course without having developed a
dynamic perspective on program execution has not really learned very much about com-
puter programming, no matter how many concept definitions they may have memorized
or how many code templates they may be capable of applying. Conversely, someone who
has crossed the threshold is well positioned to learn more with relative ease.

Teaching About a Machine Model. Every introductory programming course involves a
notional machine; the machine is implicit in the programming language used. However,
it is probably better to have learning about a notional machine as an explicit goal than
an implicit one.

According to mental model researchers, it is useful to use a conceptual model—an
explanation crafted for the purpose of explaining a system’s structure and internal
workings—in teaching. A conceptual model may be just a simple metaphor or analogy,
or a more complex explanation of the system. Conceptual models have been found
to be useful in many contexts. According to at least one review, the typical study of
mental models concludes that learners taught “how it works” using a conceptual model
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demonstrate better performance than those provided with “how to” instructions on
controlling a system [Schumacher and Czerwinski 1992].

The use of a conceptual model is also advocated by Ben-Ari in connection with
his moderate constructivism (see Section 5). Ben-Ari [2001] argues that to avoid the
ill-fated construction of intuitive knowledge about the computer and programming lan-
guage semantics, instruction should start with the underlying model before proceeding
to the abstractions founded on it. This is in line with the findings by mental model re-
searchers that changing an initial model tends to be more difficult than forming one in
the first place. Another concern is that a seriously flawed model of a notional machine
may work for explaining the behavior of some program examples, even though it fails
generally, which further deepens the learner’s belief in their present understanding.
While students obviously do not come in as blank slates, no matter what teachers do,
getting in as early as possible seems a good idea. A conceptual model can make explicit
the ways in which machine behavior differs from human thought, and it can underline
how a programming language differs from natural language and familiar mathematics.

Furthermore, a conceptual model of a notional machine may serve as a basis for
teaching about program tracing. The conceptual model can suggest a suitable perspec-
tive for learners to adopt as they trace programs. It may also provide a platform for
teachers and learners to discuss what to keep track of while tracing and the role of
external representations.

The Alternative: An Implicit Machine. By no means do all CS1 teachers explicitly
teach their students about a notional machine. Not everyone agrees that it even makes
sense to do so. As discussed in Section 5, strong forms of constructivism may lead to
the rejection of ontology as an epistemological basis and to the rejection of the impor-
tance of explicitly teaching a normative model of the computer. Greening [1999] claims
that with the employment constructivist practices such as problem-based learning, se-
rious problems will not arise because students will discover viable understandings of
the computer as they work on large, complex projects: “A constructivist environment
would not find students writing the trivial code fragments needed to allow such miscon-
ceptions to escape.” If this is the case, the implications for introductory programming
education are significant; however, the CER literature presently appears to provide
little in the way of concrete evidence supporting this argument.

8.2. Techniques for Teaching

Assuming we wish to teach explicitly about program dynamics and a notional machine,
what should we do in practice?

Pedagogy for Threshold Concepts. The threshold concepts literature makes many
pedagogical suggestions [Meyer and Land 2006; Land and Meyer 2008]. For instance,
teachers should seek to inform students about the existence of threshold concepts
and liminality, increase students’ metacognition about their liminal states, and help
students deal with uncertainty and the emotional issues involved. Students need to be
engaged in actively and consciously manipulating each threshold concept in order to
internalize it. Students should be helped to become aware of the ways in which they
presently think and practice, and motivated to transform those ways. The kinds of
mimicry that are motivated by a genuine attempt to cross a threshold should be seen
as positive rather than negative.

To follow this advice, CS1 teachers should try to help their students become aware
of the importance of the (candidate) threshold concept of program dynamics and its
troublesomeness to numerous students. They should encourage students to become
self-aware of how they think about programs and reason about what programs do. One
way to accomplish this may be through visualizations and metaphors that concretize
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the dynamic aspects of programs. By making program dynamics tangible, the teacher
may not only help the student to think about programs dynamically but make the
student more conscious of what they are doing. A student who is metacognitively
aware of thinking about program execution as a dynamic step-by-step process may
find it easier to grasp the general principles embodied in the threshold concept and to
relate them to multiple contexts. Being exposed to other students’ struggles with the
same issue may help learners cope with the affective challenges of deep learning; peer
teaching techniques and groupwork may be helpful here.

Program Visualization. A relatively popular means for making a notional machine
concrete is to visualize it and its behavior. This may be accomplished by drawing
on paper or blackboard, or in presentation software; another alternative is to use
visualization software that is built to visualize program execution. The most familiar
example of such software is the visual debugger, which provides a step-by-step trace
of an input program as it is executed, making explicit the flow of control, the values of
variables, frames on the call stack, and so on.

Regular visual debuggers are designed with the experienced programmer in mind.
Computing educators have come up with various more learning-oriented software sys-
tems to visualize aspects of the machine to beginner programmers. Some of these
systems are meant exclusively for visualizing runtime behavior related to a specific
concept, such as pointers, parameter passing, objects, or assignment; other systems
are more generic. A review of generic tools for visualizing program dynamics in CS1
can be found in a companion paper [Sorva et al. to appear].

The Impact of Learning Activities. Learning tasks that activate students are sup-
ported by many learning theories, currently perhaps most prominently by various
forms of constructivism. The goal of such tasks is to cognitively activate students;
many constructivists, for instance, argue that often this may be accomplished by re-
quiring concrete actions on the part of the students rather than having them listen to
a lecture or view a visualization that a teacher made.

Wickens and Kessel’s work on the development of mental models provides an inter-
esting perspective to the impact of learning activities on the knowledge learners con-
struct about causal systems [Kessel and Wickens 1982; Schumacher and Czerwinski
1992]. They studied the performance of people trained alternatively as “monitors,” who
supervise a complex technological system, or as “controllers,” who control the system
manually. As one would expect, Wickens and Kessel found that training in system
monitoring improves people’s monitoring skills, and training in controlling a system
improves controlling skills. However, and significantly, they also found that the con-
trollers could transfer their skills to monitoring tasks, while the reverse was not true
of the monitors. The controllers were also found to be better at detecting system faults
from subtle cues that escaped the attention of the monitors. Their result demonstrates
that people doing similar yet different tasks on the same machine develop different
kinds of knowledge about it. In particular, a more passive task resulted in worse learn-
ing. It seems likely that the novice programmer who merely studies visualizations of
the computer running programs is less likely to become a good “notional machinist”
than the another who actively engages with the program runtime.

Program visualization for beginner programmers, like software visualization within
computing education in general, has a credible track record but is not a panacea.
During the past decade, the role of learning activities has surfaced as a major theme
within the CER literature on visualization, particularly in algorithm visualization
but also in the context of visualizing notional machines for beginners. In particular,
research has suggested that the way learners engage with software visualizations
is more important from a learning point of view than the visualization techniques
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used [Hundhausen et al. 2002; Naps et al. 2003; Sorva et al. to appear]. Some recent
visualization systems especially seek to engage learners in answering questions
about programs or in controlling execution manually through a visualization. Having
students draw visualizations on paper or role-play a notional machine in class are
alternative pedagogies that may be useful in getting students to engage with program
dynamics [Sorva et al. to appear]. Even where such activities do not explicitly feature
a “machine,” they may help students understand program execution within a notional
machine [Andrianoff and Levine 2002; Borstler and Schulte 2005].

Variation in Critical Aspects. In the phenomenographic tradition (Section 6), the
teacher’s job is seen primarily as one of helping students discern critical aspects and
associate them with the phenomenon. The teacher must create an appropriate “space
of learning” [Marton et al. 2004]—a learning situation in which the targeted critical as-
pects are present, thereby providing an opportunity to learn about the phenomenon. In
many cases, just spelling out critical aspects is not sufficient, however. Students should
be placed in situations where they feel they need a new perspective to the phenomenon
they are learning about. Marton and Booth [1997] write of building a relevance struc-
ture for a learning situation—defined as a person’s experience of what a situation calls
for—and encourage teachers to “stage situations for learning in which students meet
new abstractions, principles, theories, and explanations through events that create a
state of suspense.” Furthermore, it is suggested that challenging phenomena may be
best learned about by first focusing on individual critical aspects separately and then
“fusing” aspects together to discern their relationships and gain a holistic feel for the
phenomenon [Marton et al. 2004].

In the context of program dynamics, pedagogy based on phenomenography and the
associated variation theory of learning is being explored by Thuné and Eckerdal [2009].
Their approach is to expose students to examples in which changes to program text are
minimal but have dramatic impact on what the program does when it is run. Once the
dynamic aspect of a program has been brought into focus in this way, students explore
the relationship between program text and the resulting behavior using software tools
(e.g., a visual debugger).

The Impact of Environments. Programming paradigms and programming environ-
ments can make a difference to learning about program dynamics. Some existing
environments, and perhaps especially the programming environments of the future,
blur the line between development time and program runtime—consider, for instance,
the Smalltalk environment, the BluedJ IDE [Ko6lling 2008], the DISCOVER tutor
[Ramadhan et al. 2001], and the recent work of Victor [2012]. Such environments bring
many exciting benefits to both novice and expert programmers. They may also introduce
some pedagogical challenges. For instance, as Ragonis and Ben-Ari [2005a, 2005b] stud-
ied high school students learning object-oriented programming, they “became aware of
serious learning difficulties on program dynamics,” as “students find it hard to create a
general picture of the execution of a program that solves a certain problem.” They sug-
gest that object-oriented modeling and pedagogical tools that involve direct manipula-
tion of objects while authoring a program (such as BluedJ) may exacerbate this difficulty.

The Impact of Curricular Ordering. How well students learn about the notional
machine may be affected in various ways by the ordering of topics in instruction. It
has been argued both on theoretical grounds [Ben-Ari 2001] and on the basis of direct
empirical evidence [Mayer 1976, 1981] that it could be a better idea to help students
form a viable mental model of the computer before they are taught to program in a
high-level language. Delaying programming assignments may help prevent the rise of
misconceptions as learners then have prior knowledge to found their understandings
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of programming constructs on (see Section 5.2). However, such an approach involves a
major trade-off, as students need to spend more time on fundamental concepts before
they get to work with code and motivating programming projects.

We may gain another insight to topic ordering from an experimental study by Kessler
and Anderson [1986] in which a group of novices learned recursive programming
first, followed by iterative programming, and another group was introduced to the
topics in the reverse order; neither group was explicitly taught about a notional
machine (see also the similar study by Wiedenbeck [1989]). The students who started
with iteration initially formed better mental models of control flow, which they were
later able to transfer to the novel context of recursive programming. In contrast, the
students who started with recursive programming tended toward a template-based
programming style in which they tried to match the surface features of problems to
the surface features of known program examples. Consequently, the recursion-first
group managed to solve certain kinds of recursive problems but failed to transfer
what they knew to iterative programming, becoming “overwhelmed by the surface
differences between recursion and iteration.” A protocol analysis suggested that the
recursion-first group did not construct a model of the implicit principles of control
flow underlying the example programs they saw; in other words, they had failed to
understand the required notional machine. Kessler and Anderson’s results highlight
a pitfall in transfer from recursion to iteration, meaning that either one should start
with iteration or alternatively pay particular attention to the execution model of
programs as one moves from recursion to iteration. More generally, these results
emphasize the importance for CS1 teachers to examine the subtle ways in which topic
ordering may impact on learning about program dynamics.

9. NOTIONAL MACHINES AND OBJECT-ORIENTED PROGRAMMING

An ongoing debate among practitioners concerns whether object-oriented program-
ming is an appropriate paradigm for beginner programmers [Bruce 2004; Lister et al.
2006]. Since the 1990s, objects-early approaches have become common, but more
traditional procedural-first approaches also continue to be popular. In this section, I
review what has been said regarding notional machines in the context object-oriented
programming in CS1.

To follow the advice given in the previous sections, a teacher using OOP in CS1
should provide a conceptual model of a notional machine that explains the dynamic
behavior of object-oriented programs at a reasonable level of abstraction. But what
is an appropriate object-oriented notional machine like? Different views have been
expressed in the literature.

An Extended Imperative Machine. Some have argued that a notional machine suit-
able for object-oriented programming is an extension of a procedural or imperative
notional machine. Sajaniemi and Kuittinen [2008] compare two notional machines for
object-oriented programming and procedural programming, both of which describe ex-
ecution at the same level of abstraction. They argue that a notional machine for very
simple imperative programs needs to feature (only) variables, I/O devices, and a pro-
gram counter. It can be seamlessly expanded into a richer notional machine by adding
pointers, a call stack, and mechanisms for parameter passing and returning values
once students reach programs involving pointers and functions. In contrast, Sajaniemi
and Kuittinen argue, any object-oriented notional machine must be more complex, fea-
turing objects, object references, a call stack, mechanisms for parameter passing and
return values, variables, I/O devices, and a program counter. According to Sajaniemi
and Kuittinen, “not only is the size of the required notional machine much larger than
in the procedural case, but the initial notional machine needed in order to understand
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the first programs is much more complicated, as well.” They draw on the literature
(see Section 3) to further claim that “the OO notional machine is even more poorly
understood by students than the imperative notional machine.”

Schulte and Bennedsen [2006] briefly mention an object-oriented notional machine
that “comprises traditional imperative aspects of the programming language as well
as an understanding of the interaction among objects that take place during run-time.”
This phrasing also suggests an object-oriented notional machine that is an extension
of an imperative one but also involves higher-level aspects.

A High-Level OO Machine. Sajaniemi and Kuittinen’s object-oriented notional ma-
chine operates on the same level of abstraction as their procedural notional machine,
dealing with primitives such as variables and stack frames. In contrast, Bergin [2000]
emphasizes the dramatically different way computation is thought about in OOP.

One fairly typical component of a beginning course of programming using the
procedural paradigm is a discussion of the von Neumann machine architec-
ture. ... This simple machine model fits well with the procedural paradigm,
but less well with other, more abstract, ways of looking at computation.
There is a simple relationship between the physical level provided by the
von Neumann architecture and the virtual level provided by most procedu-
ral languages. This is just not the case with the functional or object-oriented
paradigm. The functional paradigm, of course, completely hides the underly-
ing physical architecture. The object-oriented one does not hide it, but turns
it on its head. Instead of the data being moved to the CPU for processing, a
very common metaphor in OOP is that the CPU moves inside the objects.

Elsewhere, Gries [2008] criticizes the use of low-level abstractions in teaching about
OOP.

But many programming texts fail to use abstraction appropriately, e.g., by
describing variables and assignment in terms of computers ... Introducing
computing concepts in terms of the computer can create unnecessary and
confusing detail, especially when OO concepts are described in terms of a
computer, with discussions of pointers to objects in memory, heaps, and other
implementation-related terms.

” &«

Gries prefers to scrap difficult terminology (e.g., “reference,” “pointer”) as “with ap-
propriate abstraction away from the computer, these terms become unnecessary.” He
suggests a high-level metaphorical conceptual model for program execution in terms
of objects and classes.

In a similar vein, Caspersen and his colleagues have sought to represent an object-
oriented notional machine on a higher level of abstraction [Caspersen 2007; Bennedsen
and Schulte 2006; Henriksen 2007]. They argue that object-oriented programmers
need to understand program execution in terms of a notional machine that deals with
interacting object structures, and envision the use of a conceptual model that would
abstract out details such as expression evaluation and concentrate on interactions.
Caspersen [2007] outlines a future system in which students could “play” with the
visualization of an object model, stepping forward and backward, and making changes
to program state at will.

Two Machines. Berglund and Lister [2007, 2010] found through phenomenographic
analysis that amongst participants in the objects-early debate, objects early is expe-
rienced in different ways: as learning an extension of imperative programming or as
learning something conceptually quite distinct from imperative programming. This
qualitative divide is (in my interpretation) reflected in the literature on object-oriented
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notional machines. Sajaniemi and Kuittinen’s OO notional machine is an example of
the former perception, while Bergin represents the other line of thinking.

Most writers, perhaps for simplicity’s sake, talk of a single procedural/imperative
notional machine and of a single, more complex, object-oriented notional machine. An-
other way to think about the matter is that while a single notional machine may be
enough to understand procedural programs, object-oriented programming effectively
requires (at least) two different notional machines. One can be seen as an object-
enabled extension of a procedural notional machine a la Sajaniemi and Kuittinen, and
another describes message-passing between interacting objects. The two notional ma-
chines operate on different levels of abstraction and give two different perspectives
on object-oriented programming. This is consistent with the idea that object-oriented
programming is simultaneously an extension of imperative programming and some-
thing conceptually different from it. Objects-early students need to learn about both
notional machines—and their relationship—early.* This makes an object-oriented CS1
more challenging to teach successfully—more is demanded of the teacher so as not to
demand too much of the students. When you succeed, however, you have accomplished
more.

10. CONCLUSIONS

Schulte and Bennedsen [2006] surveyed the opinions of programming teachers on
the relative importance of various CS1 topics and made an interesting observation.
They report that even though programming teachers found some specific notional-
machine-related topics (e.g., references) to be relatively important compared to other
specific topics, the notional machine more generally was seen as relatively unimportant
compared to learning about notation and pragmatics, among other things. Schulte and
Bennedsen’s result may be affected by the teachers not agreeing on what exactly is
meant by “notional machine”—the term was used and briefly explained in the survey—
but probably also reflects the status quo in CS1 teaching, in which the big picture of
how programs work at runtime does not get quite the attention it deserves in the light
of learning theory and empirical evidence.

This article has brought together several perspectives on the role of notional ma-
chines in introductory programming education. Misconceptions catalogs, theories of
mental models and constructivism, research on learners’ ways of experiencing program-
ming, and the theory of threshold concepts all lend support to the idea that beginner
programmers need to learn about one or more notional machines. A notional machine
of some sort is present within every programming-first CS1, whether it is made explicit
or not: It is implied by the programming language and the paradigm used. Notional
machines are not a singular bottleneck responsible for students’ struggles—other chal-
lenges include learners’ lack of common solution patterns, the need for syntactical
precision, and motivational issues, for instance—but they do represent one of several
main sources of difficulty, one that programming instructors should explicitly address
as they plan their teaching.

4There is some limited evidence from program comprehension studies that suggests that novices who have
been taught object-oriented programming have more difficulty with forming so-called “program models”
(mental representations of a program text, the elementary operations it performs, control flow, etc.) whereas
within the procedural paradigm novices struggle relatively more with forming “domain models” (involving,
among other things, a program’s goals and subgoals) [Wiedenbeck and Ramalingam 1999; Wiedenbeck et al.
1999]. A conjecture from these studies is that object-oriented novices may need additional help with the
lower-level notional machine compared to procedural novices.
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